Boundedness and Monotonicity of Principal Eigenvalues for Boundary Value Problems with Indefinite Weight Functions
نویسنده
چکیده
We study the principal eigenvalues (i.e., eigenvalues corresponding to positive eigenfunctions) for the boundary value problem: −∆u(x) = λg(x)u(x), x ∈ D; (∂u/∂n)(x) + αu(x) = 0, x ∈ ∂D, where ∆ is the standard Laplace operator, D is a bounded domain with smooth boundary, g : D → R is a smooth function which changes sign on D and α∈R. We discuss the relation between α and the principal eigenvalues.
منابع مشابه
Eigenfunction Expansions for Second-Order Boundary Value Problems with Separated Boundary Conditions
In this paper, we investigate some properties of eigenvalues and eigenfunctions of boundary value problems with separated boundary conditions. Also, we obtain formal series solutions for some partial differential equations associated with the second order differential equation, and study necessary and sufficient conditions for the negative and positive eigenvalues of the boundary value problem....
متن کاملOn the Continuity of Principal Eigenvalues for Boundary Value Problems with Indefinite Weight Function with Respect to Radius of Balls in Rn
where D is a bounded domain with smooth boundary, g changes sign on D, and f is some function of class C1 such that f(0)= 0= f(1). Fleming’s results suggested that nontrivial steady-state solutions were bifurcating the trivial solutions u ≡ 0 and u ≡ 1. In order to investigate these bifurcation phenomena, it was necessary to understand the eigenvalues and eigenfunctions of the corresponding lin...
متن کاملSpectral theory for nonlocal dispersal operators with time periodic indefinite weight functions and applications
In this paper, we study the spectral theory for nonlocal dispersal operators with time periodic indefinite weight functions subject to Dirichlet type, Neumann type and spatial periodic type boundary conditions. We first obtain necessary and sufficient conditions for the existence of a unique positive principal spectrum point for such operators. We then investigate upper bounds of principal spec...
متن کاملPrincipal eigenvalues for generalised indefinite Robin problems
We consider the principal eigenvalue of generalised Robin boundary value problems on non-smooth domains, where the zero order coefficient of the boundary operator is negative or changes sign. We provide conditions so that the related eigenvalue problem has a principal eigenvalue. We work with the framework involving measure data on the boundary due to [Arendt & Warma, Potential Anal. 19, 2003, ...
متن کاملStrictly semi-positive tensors and the boundedness of tensor complementarity problems
In this paper, we present the boundedness of solution set of tensor complementarity problem defined by a strictly semi-positive tensor. For strictly semi-positive tensor, we prove that all H+(Z+)-eigenvalues of each principal sub-tensor are positive. We define two new constants associated with H+(Z+)-eigenvalues of a strictly semi-positive tensor. With the help of these two constants, we establ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002